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ABSTRACT

The superharmonic solutions of a weakly nonlinear second order differential equation governed
the dynamic behavior of a microcantilever based on TM (Tapping mode) AFM (Atomic force
microscopy) are studied analytically by applying the method of multiple scales (MMS). The
modulation equations of the amplitude and the phase are obtained. Steady state solutions,
frequency response equations, the peak amplitudes with their locations and the approximate
analytical expressions are obtained. The stability of the steady state solutions is given. Numerical
solutions of the frequency response equations and their stability conditions are carried out for
different values of the parameters in the equation. Results are presented in groups of figures.
Finally, discussion and conclusion are given.
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1 INTRODUCTION

Atomic force microscopy (AFM) is a fundamental
tool in modern nanoscience. It has
many applications in manipulation of carbon
nanotubes, nanolithography, organic molecules,
data-storage technologies and semiconductor
devices. The idea of AFM is based on the
monitoring and control of the dynamics of a
sharp probe tip which is attached to a flexible
microcantilever and interacts with the sample
surface. The atomic force microscope (AFM) is
designed to exploit this level of sensitivity. The
ability to accurately measure material properties
at nanometer length scales is a critical challenge
in the design, manufacture of many emerging
materials and systems. It has special important
in nanoscale mechanical properties including
elasticity, friction, plasticity and wear, as they
can significantly influence macro-scale behavior.
In particular, several dynamic techniques where
the AFM tip, cantilever base, or the samples
are subjected to a periodic excitation have been
used for many applications. Different modes of
AFM operation may be set up according to the
frequency and amplitude of the vibration applied
and the AFM component that is applied to it
[1, 2, 3, 4, 5].

The mathematically study of most classical
dynamical systems and nonclassical dynamical
systems (Micro and Nano-electro-mechanical
systems (MEMS/NENS)) yields to nonlinear
second order ordinary differential equations
or a set of a nonlinear coupled second order
ordinary differential equations. So there
exist significant efforts to study the different
types of periodic solutions of these ordinary
differential equations (harmonic, sub, super, sub-
super, super-sub and combinations harmonic
solutions) by using the perturbation technique
[6, 7, 8]. Elnaggar and El-Bassiouny [9]
investigated superharmonic solution of self-
excited two coupled second order systems to
multi-frequency excitations. In the particular case
of a superharmonic solution, Piccirillo et al. [10]
studied the dynamics of the shape memory

oscillator. They obtained an approximate
solution to the governing equations of motion.
Shooshtari and Pasha Zanoosi [11] represented
the superharmonic solution of second order
weakly nonlinear differential equation that
represents the vibration of a mass grounded
system which includes two linear and nonlinear
springs in series. Caruntu and Knechty [12]
investigated analytically superharmonic solution
of the governing equation of electrostatically
actuated microresonators. The superharmonic
solution of a forced single degree of freedom
(SDOF) nonlinear system was represented
by Elnaggar et al. [13]. Ji and Zhang [14]
investigated the superharmonic solution of
a weakly nonlinear oscillator having cubic
nonlinearity. The study of a superharmonic
solution of the governing equation of a nonlinear
cantilever beam with tip mass subject to an
axial force and electrostatic excitation are
represented by Kim et al. [15]. Elnaggar
and Khalil [16] discussed the superharmonic
solution for nonlinear system with two distinct
time-delays under an external excitation. The
superharmonic solution of a modified Duffing-Van
der Pol equation subjected to weakly nonlinear
parametric and external excitations represented
by Elnaggar et al. [17, 18]. Wen-Ming Zhang et
al. [19] studied the dynamic behavior of a micro
cantilever based TM-AFM with squeeze film
damping effects using numerical simulation.
Elnaggar et al. [20] investigated the harmonic
solution of a weakly non-linear second order
differential equation governed the dynamic
behavior of a micro cantilever based on TM
(Tapping mode) AFM (Atomic force microscopy).

The object of this work is to study superharmonic
solutions of order m(m = 2, 3) (i.e. periodic
solution has as its least period 1/m of the period
of the external excitation) of a weakly nonlinear
second order differential equation governed the
motion of micro cantilever based TM-AFMs with
squeeze film damping by using the perturbation
technique (Method of multiple scales) [7, 8]. The
modulation equations of the amplitude and the
phase are determined. Steady state solutions,
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frequency response equations and stability
analysis are given. Peak amplitude and its
localization are determined. Numerical solutions
for the frequency response equation and the
stability conditions are carried out. Results are
presented in group of figures in which solid
(dashed) curves represented stable (unstable)
superharmonic solutions. Finally, discussion and
conclusion are given.

2 FORMULATION OF THE
PROBLEM AND PERTURBA-
TION ANALYSIS

Consider the following nonlinear second order
differential equation [19]

u′′+ ζu′+u+βu3 = − d

(α+ u)2
+

dΣ6

30(α+ u)8
+

ϵ

(
fCosΩt− η

(α+ u)3
u′
)

(2.1)

Where α represent the equilibrium coefficient
ratio, β mean the cubic stiffness ratio, d is
constant, Σ mean the the material property
parameter, ζ is the coefficient of damping term, η
represent the squeeze film damping, Ω and f are
the frequency and the amplitude of the eternal
excitation of the system.

By using Taylor expansion and retained only
three terms of expansion. For applying
perturbation technique, we introduce a small
parameter ϵ << 1 in the nonlinear terms and
taking the amplitude of the excitation force of
O(1), then we get the following weakly nonlinear
second order differential equation:

u′′ + ω2
0u+ ϵ(2µu′ − α3u

2 + βu3 −

α5uu
′ + α6u

2u′) = α1 + fCosΩt (2.2)

Where
ω2
0 = 1 − α2, 2µ = ζ + α4 = ζ + η

α3 , α1 =
dΣ6

30α8 − d
α2 , α2 = 2d

α3 − 4dΣ6

15α9 , α3 = 6dΣ6

5α10 − 3d
α4 ,

α4 = η
α3 , α5 = 3η

α4 and α6 = 6η
α5 .

An approximate solution of equation (2.2) can be
obtained by using the method of multiple scales
(Nayfeh [7, 8]), we get a first order uniform
solution of equation (2.2) in the form

u(t; ϵ) = u0(T0, T1) + ϵu1(T0, T1) + ..., (2.3)

where T0 = t is the first scale associated with
changes occurring at the frequencies ω0 and Ω,
and T1 = ϵt is a slow scale associated with
modulations in the amplitude. In terms of T1, the
time derivatives become

d

dt
= D0 + ϵD1 + ... &

d2

dt2
= D2

0 + 2ϵD0D1 + ... (2.4)

where Dn = ∂
∂Tn

. Substituting equations
(2.3) and (2.4) into equation (2.2) and equating
coefficients of like powers of ϵ to zero, we obtain
a set of linear differential equations

D2
0u0 + ω2

0u0 = α1 + fCosΩt (2.5)

D2
0u1 + ω2

0u1 =

− 2µD0u0 − 2D1D0u0 − βu3
0 + α3u

2
0 + α5u0D0u0

− α6u
2
0D0u0

(2.6)

Solving the equation (2.5) for u0(T0, T1), we have

u0(T0, T1) = A(T1)e
iω0T0 + Ā (T1) e

−iω0T0 + κ+

ΛCosΩT0 (2.7)

where i2 = 1, Ā is the complex conjugate of A,
κ = α1

ω2
0
and Λ = f

ω2
0−Ω2 . Then equation (2.6)

becomes,

D0
2u1 + ω2

0u1 =− 1

2
eiT0ω0(A(iω0

(
α6

(
2AĀ+ 2κ2 + Λ2

)
− 2α5κ+ 4µ

)
+ 6AβĀ− 4α3κ+ 6βκ2 + 3βΛ2) + 4iω0A

′) + 2α3AĀ

− 6AβκĀ− 1

8
ΛeiT0Ω(iα6Ω

(
8AĀ+ 4κ2 + Λ2

)
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+ 24AβĀ− 4iα5κΩ− 8α3κ+ 12βκ2 + 3βΛ2 + 8iΩµ)

− 1

2
ΛĀeiT0(Ω−ω0) (i (α5 − 2α6κ) (ω0 − Ω)− 2α3 + 6βκ)

− 1

4
Λ2ĀeiT0(2Ω−ω0) (3β + iα6 (2Ω− ω0))

− 1

2
ΛĀ2eiT0(Ω−2ω0) (3β + iα6 (Ω− 2ω0))

+ α3κ
2 +

α3Λ
2

2
− βκ3 − 3

2
βκΛ2

− 1

4
Λ2e2iT0Ω (−iΩ (α5 − 2α6κ)− α3 + 3βκ)

− 1

8
Λ3e3iT0Ω (β + iα6Ω) +NST.+ c.c.

(2.8)

where NST. denotes the terms does not produce secular terms and c.c. denotes the
complex conjugate.

3 SUPERHARMONIC SOLUTIONS

In this article, we concerned our attention to two types of periodic solutions (superharmonic solutions
of order m, m = 2, 3)

3.1 Superharmonic Solution of Order 2
To obtain the superharmonic solution of order 2, i.e. periodic solution has its least 1

2
of the period of

external excitation; 2Ω ≈ ω0 or
2Ω = ω0 + ϵσ (3.1)

Where σ is a detuning parameter. Hence the excitation force can be written

f cosΩt = f cos
1

2
(ω0T0 + σT1) (3.2)

Eliminating the secular terms(coefficient of eiT0ω0 ) from the equation (2.8) yields

− 2A(iω0

(
α6

(
2AĀ+ 2κ2 + Λ2)− 2α5κ+ 4µ

)
+ 6AβĀ− 4α3κ

+ 6βκ2 + 3βΛ2)− 8iω0A
′ + Λ2eiϵσT0(iΩ(α5 − 2α6κ)

+ α3 − 3βκ) = 0

(3.3)

Putting A in polar form as

A =
1

2
a(T1)e

iβ1(T1) (3.4)

Where a and β1 are real functions of T1. By substituting equation (3.4) into equation (3.3) and
separating the real and the imaginary parts, we obtain a set of autonomous differential equations that
govern the amplitude a(T1) and the phase γ(T1) which are known as the modulation equations.

a′ = 2Λ2(J1 sin(γ)+ΩJ2 cos(γ))−aω0(α6J3−4α5κ+8µ)
8ω0

aγ′ = a(−3βJ3+8α3κ+8σω0)+2Λ2J1 cos(γ)−2ΩΛ2J2 sin(γ)
8ω0

(3.5)
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where γ = σT1 − β1, J1 = (α3 − 3βκ), J2 = (α5 − 2α6κ) and J3 =
(
a2 + 4κ2 + 2Λ2

)
.

Therefore for the approximate analytical expression of the superharmonic solution of order 2 is

u = a cos[2Ωt− γ] +
f

ω2
0 − Ω2

cos[Ωt] +
α1

ω2
0

+ o(ϵ) (3.6)

Where γ and a are given by (3.5).

To obtain the steady state solutions, putting a′ = γ′ = 0 in system (3.5), then we have a set of
algebraic equations for amplitude a and phase γ of the steady state solutions (superharmonic solution
of order 2).

−3aβJ3 + 8aα3κ+ 2Λ2 cos(γ)J1 + 8aσω0 = 2ΩΛ2J2 sin(γ)
aω0 (α6J3 − 4α5κ+ 8µ)− 2Λ2 sin(γ)J1 = 2ΩΛ2J2 cos(γ)

(3.7)

Squaring both equations in system (3.7) and adding, we get the frequency response equation in the
form

a6 (α2
6ω

2
0 + 9β2)+ 4a4(−12α3βκ+ α6ω

2
0

(
α6

(
2κ2 + Λ2)− 2α5κ+ 4µ

)
+ 9β2 (2κ2 + Λ2)− 12βσω0)− 4a3ΩΛ2J2 (α6ω0 cos(γ)− 3β sin(γ))

+ 4a2(−8σω0

(
3β
(
2κ2 + Λ2)− 4α3κ

)
− 8α3κ(3β

(
2κ2 + Λ2)

− 2α3κ) + ω2
0((α6

(
2κ2 + Λ2)− 2α5κ)

(
α6

(
2κ2 + Λ2)− 2α5κ+ 8µ

)
+ 16(µ2 + σ2)) + 9β2 (2κ2 + Λ2)2)
+ a(8ΩΛ2 (α5 − 2α6κ) sin(γ)

(
−4α3κ+ 3β

(
2κ2 + Λ2)− 4σω0

)
− 8ΩΛ2ω0 (α5 − 2α6κ) cos(γ)

(
α6

(
2κ2 + Λ2)− 2α5κ+ 4µ

)
)

− 4Λ4 ((α3 − 3βκ) 2 − Ω2 (α5 − 2α6κ)
2) = 0

(3.8)

solving equation (3.8) for σ, we obtain

σ =
3aβ

(
a2 + 4κ2 + 2Λ2

)
− 8aα3κ+ 2ΩΛ2 (α5 − 2α6κ) sin(γ)

8aω0

± 1

8a2ω2
0

√
a2ω2

0 (4J
2
1Λ

4 − (aω0 (−4α5κ+ α6J3 + 8µ)− 2J2ΩΛ2 cos(γ)) 2)

(3.9)

The peak amplitude would be verifying the following equation

4J2
1Λ

4 −
(
apω0 (−4α5κ+ α6J3 + 8µ)− 2J2ΩΛ

2 cos(γ)
) 2 = 0 (3.10)

Then the corresponding value of σ is given from

σp =
3apβ

(
a2
p + 4κ2 + 2Λ2

)
− 8apα3κ+ 2ΩΛ2J2 sin(γ)

8apω0
(3.11)

The stability of superharmonic solutions of order 2 can be examined by introducing a small perturbation
to the steady state solutions i. e. putting

a = a0 + a1 (3.12)

γ = γ0 + γ1 (3.13)

Where a0 and γ0 represent the steady state solution a1 and γ1 represent the perturbation. Substituting
equations (3.12) and (3.13) into system (3.5), by using the steady state condition and keeping linear
terms, one obtains

a′
1 =

(−ω0(3a2
0α6+4α6κ

2−4α5κ+2α6Λ
2+8µ)a1−J4γ1)

8ω0

γ′
1 = −J5a1+ω0(a0(α6(a2

0+4κ2+2Λ2)−4α5κ+8µ))γ1

8a0ω0

(3.14)
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where J4 = 8a0σω0−a0

(
3β
(
a2
0 + 4κ2 + 2Λ2

)
− 8α3κ

)
and J5 = 9a2

0β−8α3κ+6β
(
2κ2 + Λ2

)
−8σω0.

Substituting a1 = Γ1e
θT1 and γ1 = Γ2e

θT1 into system (3.14). We get

J5Γ1 + a0ω0

(
α6

(
a2
0 + 4κ2 + 2Λ2

)
− 4α5κ+ 8(θ + µ)

)
Γ2 = 0(

ω0

(
α6

(
3a2

0 + 4κ2 + 2Λ2
)
− 4α5κ

)
+ 8ω0(θ + µ)

)
Γ1 + J4Γ2 = 0

(3.15)

For obtaining the nontrivial solution the determinant of the coefficient matrix for Γ1 and Γ2 must
vanish, which leads to a quadratic equation for the eigenvalue θ.

θ =
1

8

(
−2α6

(
a2
0 + 2κ2 + Λ2)+ 4α5κ− 8µ±

√
α2
6a

6
0ω

4
0 + a0J4J5ω2

0

a0ω2
0

)
(3.16)

The stability of the superharmonic solution can be examined by evaluating the sign of the real part of
the eigenvalues. Consequently, a solution is stable if and only if the real parts of both eigenvalues of
equation (3.16) are less than zero.

3.2 Superharmonic Solution of Order 3
To obtain the superharmonic solution of order 3, (i.e. periodic solution has its least period 1/3 the
period of external excitation), hence 3Ω ≈ ω0 or

3Ω = ω0 + ϵσ (3.17)

where is σ a detuning parameter. Hence the excitation can be written as

f cos(Ωt) = f cos(
1

3
(ω0T0 + σT1)) (3.18)

By eliminating the secular terms from the equation (2.8), we get

12A(−iω0

(
α6

(
2AĀ+ 2κ2 + Λ2)− 2α5κ+ 4µ

)
− 6AβĀ+ 4α3κ

− 6βκ2 − 3βΛ2)− 48iω0A
′ − Λ3eiϵσT0 (3β + iα6Ω) = 0

(3.19)

Using the polar form A = 1
2
a(T1)e

iβ1(T1) into the equation (3.19) and separating real and imaginary
parts, we obtain a set of autonomous differential equations that govern the amplitude a(T1) and the
phase γ(T1) which known the modulation equations:

a′ = −aω0(α6(a2+4κ2+2Λ2)−4α5κ+8µ)+Λ3(α6Ωcos(γ)+β sin(γ))

8ω0

aγ′ =
−β(3a(a2+4κ2+2Λ2)+Λ3 cos(γ))+8aα3κ+α6Λ

3Ω sin(γ)+8aσω0

8ω0

(3.20)

where γ = σT1 − β1.

Therefore for the approximate analytical expression of the superharmonic solution of order 3 is

u = a cos[3Ωt− γ] +
f

ω2
0 − Ω2

cos[Ωt] +
α1

ω2
0

+ o(ϵ) (3.21)

Where a and γ are given by (3.20).

To obtain the steady state solutions, putting a′ = γ′ = 0 in system (3.20), then we have a set
of algebraic equations for amplitude a and phase γ of the steady state solutions (superharmonic
solution of order 3).

4aω0 (α5κ− 2µ)− α6

(
aω0

(
a2 + 4κ2 + 2Λ2

)
+ Λ3Ωcos(γ)

)
= βΛ3 sin(γ)

−3aβ
(
a2 + 4κ2 + 2Λ2

)
+ 8aα3κ+ α6Λ

3Ωsin(γ) + 8aσω0 = βΛ3 cos(γ)
(3.22)
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Squaring and adding both equations in system (3.22), we get the frequency response equation

a6 (α2
6ω

2
0 + 9β2)+ 4a4(−12α3βκ+ α6ω

2
0

(
α6

(
2κ2 + Λ2)− 2α5κ+ 4µ

)
+ 9β2 (2κ2 + Λ2)− 12βσω0) + 2α6a

3Λ3 (α6ω0Ωcos(γ)− 3βΩsin(γ))

+ 4a2(−8σω0

(
3β
(
2κ2 + Λ2)− 4α3κ

)
− 8α3κ

(
3β
(
2κ2 + Λ2)− 2α3κ

)
+ ω2

0(
(
α6

(
2κ2 + Λ2)− 2α5κ

) (
α6

(
2κ2 + Λ2)− 2α5κ+ 8µ

)
+ 16

(
µ2 + σ2)) + 9β2 (2κ2 + Λ2)2) + 4α6aΛ

3(Ω sin(γ)(4α3κ

− 3β
(
2κ2 + Λ2)+ 4σω0) + ω0Ωcos(γ)(α6

(
2κ2 + Λ2)

− 2α5κ+ 4µ)) + α2
6Λ

6Ω2 − β2Λ6 = 0

(3.23)

Solving equation (3.23) for σ, we obtain

σ =
1

8a2ω2
0

[aω0

(
3aβ

(
a2 + 4κ2 + 2Λ2)− 8aα3κ+ α6Λ

3(−Ω) sin(γ)
)

±
√

a2ω2
0 (β

2Λ6 − (aω0 (α6 (a2 + 4κ2 + 2Λ2)− 4α5κ+ 8µ) + α6Λ3Ωcos(γ)) 2)]

(3.24)

The peak amplitude would be verifying the following equation

β2Λ6 −
(
apω0

(
α6

(
a2
p + 4κ2 + 2Λ2)− 4α5κ+ 8µ

)
+ α6Λ

3Ωcos(γ)
) 2 = 0 (3.25)

Then the corresponding value of σ is given from

σp =
3apβ

(
a2
p + 4κ2 + 2Λ2

)
− 8apα3κ− α6Λ

3Ωsin(γ)

8apω0
(3.26)

The stability of superharmonic solutions of order 3 can be examined by introducing a small perturbation
to the steady state solutions i. e. putting

a = a0 + a1 (3.27)

γ = γ0 + γ1 (3.28)
Where a0 and γ0 represent the steady state solution a1 and γ1 represent the perturbation. Substituting
equations (3.27) and (3.28) into system (3.20) by using the steady state condition and keeping linear
terms, one obtains

a′
1 = − 1

8
(α6J6 − 4α5κ+ 8µ) a1 − J7

8ω0
γ1

γ′
1 = (−J9)

8a0ω0
a1 − 1

8
J8γ1

(3.29)

Where
J6 = 3a2

0 + 4κ2 + 2Λ2, J7 = 8a0σω0 − a0

(
3a2

0β − 8α3κ+ 6β
(
2κ2 + Λ2

))
,

J8 = a2
0α6 + 4α6κ

2 − 4α5κ+ 2α6Λ
2 + 8µ and J9 = 9a2

0β − 8α3κ+ 12βκ2 + 6βΛ2 − 8σω0

Substituting a1 = Γ1e
θT1 and γ1 = Γ2e

θT1 into system (3.29). We get

ω0

(
α6

(
3a2

0 + 4κ2 + 2Λ2
)
− 4α5κ+ 8(θ + µ)

)
Γ1 + J7Γ2 = 0

J9Γ1 + a0ω0 (8θ + J8) Γ2 = 0
(3.30)

For obtaining the nontrivial solution the determinant of the coefficient matrix for Γ1 and Γ2 must
vanish, which leads to a quadratic equation for the eigenvalue θ.

θ =
(−α6J6 + 4α5κ− J8 − 8µ)

16
)

± 1

16a0ω2
0

√
a0ω2

0 (a0ω2
0 (−α6J6 + 4α5κ+ J8 − 8µ) 2 + 4J7J9)

(3.31)

The stability of the superharmonic solution can be examined by evaluating the sign of the real part
of the eigenvalues. Hence, a solution is stable if and only if the real parts of both eigenvalues of
equation (3.31) are less than zero.
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4 NUMERICAL RESULTS
WITH DISCUSSION

This section presents numerical results in the
form of frequency response curves obtained by
solving the frequency response equations(3.8),
(3.23) and stability conditions (3.16), (3.31). The
numerical results are plotted in groups of Figs.
(1-7) and (8-14), which represent the variation of
the amplitude a with the detuning parameter σ
for a given values of the other parameters where
the solid lines represent stable solutions and the
dashed lines represent unstable solutions.

Figs. (1-7) represent the frequency response
curves for the superharmonic solution of order 2
for certain values of the parameters α = 2, β =
1, η = 0.0635, f = 0.5,Σ = 0.3, ζ = 0.01, d =
4/27 and γ = 90.

Fig. 1. The frequency response curves for
different values of µ

Fig. 2. The frequency response curves for
different values of β

Fig.1 shows the variation of the amplitude of
the steady state solutions for different values
of the equilibrium coefficient ratio α. It can
be seen from this figure by decreasing α, the

curves bent to right of σ axis, their exist three
solutions two stable and one unstable and jump
phenomena. From Fig. 2, we note that for the
cubic stiffness ratio β = 0.6, we have one stable
solution. By increasing β, the curves bent to
the right hand side (R.H.S) and we have three
solutions, two stable and one unstable and then
jump phenomena for certain values of σ. From
Fig. 3, by decreasing the squeeze film damping
η, we have three solutions; two stable and one
unstable, jump phenomena for certain values of
σ and the inclination in the R.H.S. Fig.4 shows
that for small values of the external force f =
0.16, we have one symmetric stable solution. By
increasing f , we have multi-valued solutions for a
certain value of σ, two stable solutions and one
unstable solution and jump phenomena and the
bend in the R.H.S. From Fig. 5, we observe that
by increasing the material property parameter Σ,
the curves bent to the right of the σ axis and their
exist three solutions; two stable, one unstable
and jump phenomena. Fig. 6 shows that by
decreasing the damping parameter ζ, we have
multi-valued solutions for a certain value of σ,
two stable solutions and one unstable solution
and jump phenomena and the bend in the R.H.S.
From Fig. 7 for small values of d = 1/28, we have
one symmetric stable solution. By increasing
d, we have multi-valued solutions for a certain
value of σ, two stable solutions and one unstable
solution and jump phenomena and the bend in
the R.H.S.

Fig. 3. The frequency response curves for
different values of η

Figs. (8-14) represent the frequency response
curves for the superharmonic solution of order 3
for certain values of the parameters α = 2, β =
1, η = 0.0635, f = 0.5,Σ = 0.3, ζ = 0.01, d =
4/27 and γ = 90.
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Fig. 4. The frequency response curves for
different values of f

Fig. 5. The frequency response curves for
different values of Σ

Fig. 6. The frequency response curves for
different values of ζ

Fig. 8 shows the variation of the amplitude of
the steady state solutions for different values of
the equilibrium coefficient ratio α. It can be seen
from this figure for α = 0.9, we have one stable
solution. By increasing α, the curves bent to
right of σ axis, their exist three solutions two
stable and one unstable and jump phenomena.
From Fig. 9, we note that for the cubic stiffness
ratio β = 0.2, we have one stable symmetric
solution. By increasing β, the curves bent to
the right hand side (R.H.S) and we have three

solutions, two stable and one unstable and then
jump phenomena for certain values of σ. From
Fig. 10, by decreasing the squeeze film damping
η, we have three solutions; two stable and one
unstable, jump phenomena for certain values of
σ and the inclination in the R.H.S. Fig. 11 shows
that for small values of the external force f =
0.1, we have one stable solution. By increasing
f , we have multi-valued solutions for a certain
value of σ, two stable solutions and one unstable
solution and jump phenomena and the bend in
the R.H.S. From Fig. 12, we observe that by
decreasing the material property parameter Σ,
the curves bent to the right of the σ axis and their
exist three solutions two stable, one unstable
and jump phenomena. Fig. 13 shows that
by reducing the damping parameter ζ, we have
multi-valued solutions for a certain value of σ;
two stable solutions, one unstable solution, jump
phenomena and the bend in the R.H.S. From Fig.
14, we observe that by increasing d, we have
multi-valued solutions for a certain value of σ; two
stable solutions and one unstable solution, jump
phenomena and the bend in the R.H.S.

Fig. 7. The frequency response curves for
different values of d

Fig. 8. The frequency response curves for
different values of α
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Fig. 9. The frequency response curves for
different values of β

Fig. 10. The frequency response curves for
different values of η

Fig. 11. The frequency response curves for
different values of f

Fig. 12. The frequency response curves for
different values of Σ

Fig. 13. The frequency response curves for
different values of ζ

Fig. 14. The frequency response curves for
different values of d

5 CONCLUSION

In this paper, we have investigated an analysis
of superharmonic solutions of order 2 and 3
for a weakly nonlinear second order differential
equation which represented the dynamic
behavior of a microcantilever based on TM
(Tapping mode) AFM (Atomic force microscopy).
Two first order ordinary differential equations
which describe the modulation of the amplitude
and the phase are solved by using the method
of multiple scales. Steady-state solution and
its stability are investigated. Peak amplitude
and its localization are determined. Numerical
solutions of the frequency response equation
and the stability equation are carried out for
different values of the parameters in the equation.
Results are represented in a group of figures in
which solid curves (dashed) are stable (unstable)
solutions.
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